Typhoon-driven variations in primary production and phytoplankton assemblages in Sagami Bay, Japan: A case study of typhoon Mawar (T0511)

KENJI TSUCHIYA1,*, TOMOKO YOSHIKI2, RYOTA NAKAJIMA1,3, HIDEO MIYAGUCHI1,5, VICTOR S. KUWAHARA1, SATORU TAGUCHI1, TOMOHIKO KIKUCHI4 & TATSUKI TODA1

1 Graduate School of Engineering, Soka University, 1–236 Tangi-cho, Hachioji, Tokyo 192–8577, Japan
2 National Research Institute of Fisheries Science, Fisheries Research Agency, 2–12–4 Fukuura, Kanazawa, Yokohama, Kanagawa 236–8648, Japan
3 Japan Agency for Marine-Earth Science and Technology, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
4 Graduate School of Environment and Information Science, Yokohama National University, 79–7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240–8501, Japan

*Corresponding author: Kenji Tsuchiya; E-mail, ktsuchiya@soka.gr.jp

Received 13 June 2012; Accepted 11 April 2013

Abstract: Climate change has the potential for intensification of typhoons, which will cause stronger effects on aquatic ecosystems in the future. The effect of typhoon Mawar (T0511), passing Manazuru Port located in the western part of Sagami Bay, Japan, was investigated from August to September 2005. Immediately after the passage of Mawar, photosynthetically available radiation showed high values, salinity decreased dramatically and nutrient concentrations (NO₂+NO₃, PO₄ and Si(OH)₄) increased. Skeletonema spp. and Leptocylindrus spp. were dominant after the passage of Mawar, and their succession was linked to the variability of the N/P ratio. Primary production was highest at 349 mg C m⁻³ day⁻¹ three days after Mawar, and high assimilation numbers lasted for nine days. The integrated primary production during the nine days after Mawar was 2.1×10⁴ mg C m⁻³, which accounted for 7.2–9.1% of the annual primary production in the upper waters of Sagami Bay. The study confirms that enhanced primary production induced by episodic typhoon events in temperate coastal regions are significant, and should be considered in annual primary production estimates.

Key words: typhoon, phytoplankton, primary production, temperate coastal water

Introduction

As the reality of climate change and global warming has become more apparent, the intensity of typhoons, tropical cyclones, and hurricanes has increased (Emanuel 2005, Webster et al. 2005, Elsner et al. 2008, Yamada et al. 2010). The destructiveness of typhoons has increased over the past 30 years, showing high correlation with rising sea surface temperatures (Emanuel 2005). The intensity of the strongest types of typhoons has increased (Elsner et al. 2008). A simulation using a global cloud-system-resolving model (GCRM) predicted increases in the frequency of the more intense typhoons with global warming (Yamada et al. 2010). Based on these studies, it is conceivable that intensification of typhoons will cause stronger physical disturbances in aquatic ecosystems.

Strong wind and heavy rain accompanied by typhoon passage induce physical disturbances such as upwelling and vertical mixing (Price 1981, Lin et al. 2003, Zheng & Tang 2007), terrestrial runoff (Zheng & Tang 2007, Chen et al. 2009) and sediment resuspension (Fogel et al. 1999), which supplies nutrients to the photic layer (e.g. Shiah et al. 2000). Consequently, phytoplankton biomass and production increase significantly (e.g. Lin et al. 2003, Chen et al. 2009; Table 1). Contribution of the increased primary production to annual primary production has primarily been estimated in tropical and subtropical regions. In the oligotrophic South China Sea, Lin et al. (2003) observed
chlorophyll \(a \) (chl \(a \)) concentrations before and after the passage of typhoon Kai-Tak using three remote sensing observational platforms (SeaWiFS, TRMM and QuickSCAT), estimated primary production using a vertical generalized production model algorithm (VGPM;Behrenfeld & Falkowski 1997), and reported that the estimated primary production resulting from the typhoon alone contributed at least 2–4% to the annual new production. Given an annual average of fourteen typhoons passing over the South China Sea, the contribution of typhoons to the South China Sea’s annual new production may be as much as 20–30% (Lin et al. 2003). Although typhoons are episodic events, the effect of a typhoon on lower trophic production, such as primary production, is significant, and should be considered in annual primary production estimates. Temperate coastal regions play an important role in the global carbon cycle due to their high primary productivity and high contribution to new production (Paerl 1995, Jickells et al. 1998). However, information is still limited with regards to quantitative estimates of primary production contributions to the annual primary production during typhoons.

Recent studies have revealed some noticeable effects of typhoon disturbances on coastal pelagic communities. Some studies showed diatom blooms such as Skeletonema spp., Chaetoceros spp. and Nitzschia spp. often dominated phytoplankton assemblages after typhoon passages in various regions (e.g. Glynn et al. 1964, Zeeman 1985, Furnas 1989, Chang et al. 1996, Chen et al. 2009). Dominance of diatoms after typhoon passage might be attributed to their high growth rate (Furnas 1990), which should contribute to increases in the sinking flux of carbon (Chen et al. 2009). Phytoplankton successions are known to be linked to and regulated by nutrients (e.g. Escaravage et al. 1996, Estrada et al. 2003, Lagus et al. 2004). However, the succession process of phytoplankton community structures, and their relationship to nutrient stoichiometry after typhoon passage are still relatively unknown.

Sagami Bay, located in the central part of Japan (Fig. 1), is considered one of the key representative bays for temperate areas because the physical, chemical and biological environments have been comprehensively investigated by many authors over a long period (e.g. Ogura 1975, Hogetsu & Taga 1977, Horikoshi 1977, Nakata 1985, Kitazato et al. 2000, Kuwahara et al. 2000a, b, Kanda et al. 2003, Fujiki et al. 2004, Hashimoto et al. 2005, Miyaguchi et al. 2008, Ara & Hiromi 2009, Ara et al. 2011). Twenty rivers including two large rivers (Sakawa River and Sagami River) flow into the bay (Hirano 1969), which leads to the formation of low salinity water masses in nearshore areas. One of the areas influenced is the western, nearshore part of Sagami Bay, including Manazuru Port. A prior study of the primary production in the area reported an annual production of 2.9×10\(^4\) mg C m\(^{-3}\) yr\(^{-1}\) (Satoh et al. 2000). During the study, a summer phytoplankton bloom occurred after 3–4

Table 1. Summary of chlorophyll \(a \) (Chl \(a \)) concentration and primary production before and after typhoon passages.

<table>
<thead>
<tr>
<th>Study site</th>
<th>Name of typhoon*</th>
<th>Chl (a) (mg m(^{-3}))</th>
<th>Primary production</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Before (B)</td>
<td>After (A)</td>
<td>A/B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mg C m(^{-3}) d(^{-1})</td>
<td>mg C m(^{-3}) d(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Oceanic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South China Sea</td>
<td>Kai-Tak</td>
<td>0.10</td>
<td>3.2</td>
<td>32</td>
</tr>
<tr>
<td>South China Sea</td>
<td>Ling-Ling</td>
<td>0.14</td>
<td>0.45</td>
<td>3.2</td>
</tr>
<tr>
<td>South China Sea</td>
<td>Kai-Tak</td>
<td>0.15</td>
<td>0.56</td>
<td>3.7</td>
</tr>
<tr>
<td>South China Sea</td>
<td>Hagibis</td>
<td>0.14</td>
<td>0.74</td>
<td>5.3</td>
</tr>
<tr>
<td>North Carolina</td>
<td>Gordon</td>
<td>0.56</td>
<td>1.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>Ivan</td>
<td>0.24–0.36</td>
<td>0.81–0.99</td>
<td>2.3–4.1</td>
</tr>
<tr>
<td>South China Sea</td>
<td>Danrey</td>
<td>0.15</td>
<td>0.72</td>
<td>4.8</td>
</tr>
<tr>
<td>Phillipine Sea**</td>
<td>Pabuk, Watip, Sepat</td>
<td>0.06–0.11</td>
<td>0.22–0.56</td>
<td>2.0–5.6</td>
</tr>
<tr>
<td>Coastal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina**</td>
<td>Dennis</td>
<td>1.0–11</td>
<td>2.5–6.0</td>
<td>0.56–2.58</td>
</tr>
<tr>
<td>the Reef of Tiafura</td>
<td>Wasa</td>
<td>0.12</td>
<td>0.21</td>
<td>1.8</td>
</tr>
<tr>
<td>Northern Taiwan</td>
<td>Tim</td>
<td>0.40–1.8</td>
<td>4.2</td>
<td>2.3–11</td>
</tr>
<tr>
<td>Northern Taiwan</td>
<td>Caulin, Doug</td>
<td>0.30</td>
<td>3.5</td>
<td>12</td>
</tr>
<tr>
<td>Northern Taiwan</td>
<td>Fred</td>
<td>0.60</td>
<td>2.0</td>
<td>3.3</td>
</tr>
<tr>
<td>North Carolina**</td>
<td>Gordon</td>
<td>0.56</td>
<td>0.56–3.4</td>
<td>1.0–6.0</td>
</tr>
<tr>
<td>Taiwan Strait**</td>
<td>Herb</td>
<td>0.28–0.48</td>
<td>0.42–0.91</td>
<td>0.89–2.1</td>
</tr>
<tr>
<td>Sagami Bay</td>
<td>Mawar</td>
<td>2.6</td>
<td>7.8</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Typhoon in the table includes tropical cyclones and hurricanes

**Ranges of data are based on individual calculations from multiple sampling stations

***Primary production before Mawar was the mean value in summer at Sta. A derived from Satoh et al. (2000)
K. Tsuchiya et al.

days of persistent precipitation of 200 mm or more, and the bloom was dominated by large-sized dinoflagellates, such as Ceratium furca Ehrenberg (Satoh et al. 2000). Increase in freshwater discharge due to precipitation results in large loadings of nitrogen and silicate to the coastal area, which leads to phosphorus limitation of primary productivity from spring to summer (Fujiki et al. 2004, Baek et al. 2009). Although variability in phytoplankton communities and primary production has been documented in the near-shore, western part of Sagami Bay, information on the importance of episodic events remains limited.

The present study examines the influence of the passage of a strong typhoon on lower trophic levels in the coastal waters of Sagami Bay by conducting a time-series observation during the passage of typhoon Mawar (T0511) in August 2005. The specific objectives of the study were to clarify the pre- and post-effects of Mawar on the physical and chemical environments, and to quantify primary production and phytoplankton succession using bi-daily sampling in order to detect quick responses.

Materials and Methods

Typhoon Mawar

Typhoon Mawar (T0511) emerged near the Ogasawara Islands in southern Japan as a tropical depression on 20 August 2005 (Japan Meteorological Agency, http://www.jma.go.jp/jp/typh/; Fig. 1). Mawar then moved northwestward and its track changed northward with an average speed of 16.3 km h⁻¹. At 2:00 on 26 August, Mawar entered Sagami Bay. Mawar’s 260 km diameter area of storm force winds coincided with heavy precipitation and storm conditions around central Japan. The lowest sea-level pressure of Mawar was 930 hPa and the maximum wind speed recorded was approximately 50 m sec⁻¹. Mawar passed through Sagami Bay, and was downgraded to an extra-tropical cyclone on 28 August 2005 off the east coast of Sagami Bay, Japan.
Effect of typhoon on phytoplankton

Honshu Island, Japan. Data on Mawar were obtained from the Japan Meteorological Agency.

Sampling procedures

Sampling was conducted at Sta. A located at the mouth of Manazuru Port (35°09′49″N, 139°10′33″E, maximum depth 5 m; Fig. 1) in Sagami Bay, Japan, from 23 August to 8 September 2005, which included the time period before and after the passage of typhoon Mawar. In this study, we defined the day Mawar passed Sta. A as Day 0 (i.e. 0:00 on 26 August 2005) while 25 and 27 August 2005 were defined as Day –1 and Day 1, respectively.

Surface seawater samples were collected every 12 hrs at 0:00 and 12:00 during the study period, and analyzed for water temperature, salinity, inorganic macronutrients (NO\(_3^–\)+NO\(_2^–\), PO\(_4\), and Si(OH)\(_4\)), chl \(a\) and particulate organic carbon (POC) concentrations. Instrument precision of the refractometer for salinity measurement (ATAGO Co., Ltd.) used in the present study was ±2‰. We also collected samples for study of the phytoplankton assemblages every 24 hrs (0:00). Primary production measurements were conducted every 2 d after Day 1. The sampling at 0:00 on Day 0 was interrupted because Mawar was closest to the sampling site. The seawater sample collected at 12:00 on Day 0 was used for the phytoplankton assemblage sample of Day 0. Collected water samples were pre-screened through 180 \(\mu\)m nylon mesh to remove large zooplankton and debris, and were immediately brought back to the field laboratory (Manazuru Marine Center for Environmental Research and Education, Yokohama National University).

Triplicate subsamples for inorganic macronutrient analyses were filtered through a 0.45 \(\mu\)m pore size (Milllex SLHA, Millipore) membrane filter, placed into 10 mL plastic tubes, and stored at −20°C until analysis. The concentrations of NO\(_3^–\)+NO\(_2^–\), PO\(_4\), and Si(OH)\(_4\)) were measured as described by Parsons et al. (1984) using a nutrient autoanalyzer (AACS-II, Bran + Luebbe).

Duplicate subsamples of 300 to 500 mL for POC measurement were filtered onto pre-combusted (450°C, 4 h) glass fiber filters (GF/F, Whatman). The filters were treated using the same procedure as for the POC measurements described above. The concentration of POC and the isotopic ratios of \(^{13}\)C and \(^{12}\)C were determined by a mass spectrometer (TracerMat, Finnigan MAT) combined with an elemental analyzer (Instruments NA-1500 CNS, Fisons). Primary production of phytoplankton was calculated according to Hama et al. (1983). In the present study, dissolved inorganic carbon (DIC) was not measured, and primary production was calculated assuming DIC=2.2 mM (Gao & McKinley 1994). The dark uptake was always corrected for primary production. In order to calculate the amount of carbon fixed per unit of chlorophyll \(a\) per day, the assimilation number, chl \(a\) concentration was measured as described above.

Samples for phytoplankton taxonomic identification (500 mL) were fixed in a 2% glutaraldehyde solution. Five to 20 mL of the phytoplankton sample was poured into a settling chamber (HYDRO-BIOS), and settled for 24 h (Hasle 1978). Identification and enumeration of microphytoplankton species, especially diatoms and dinoflagellates, was conducted using an inverted microscope (Axiovert 25, Carl Zeiss) according to Fukuyo et al. (1990) and Chihara et al. (1997) for dinoflagellates, and Hasle & Syvertsen (1997) for diatoms. More than 400 phytoplankton cells were counted per sample. Other phytoplankton taxa were excluded from the analysis due to low abundance. The taxonomic composition of microphytoplankton was analyzed by the multidimensional scaling (MDS) method using the Bray-Curtis similarity index in order to examine the dynamics of the phytoplankton community structure.

Meteorological data

Atmospheric pressure, wind speed, wind direction and precipitation data were obtained from the Japan Meteorological Agency (http://www.jma.go.jp/) at the Ajiro Office, Shizuoka, Japan (35°02.7′N, 139°05.5′E), which is located on the east coast of the Izu Peninsula and less than 15 km away from our sampling site. Atmospheric pressure, wind speed and wind direction are mean values per hour. Precipitation is shown as daily integrated values. Photosynthetically active radiation (PAR) was measured every day during the study period with a surface radiometer (LI-190 SA, LI-COR) placed on the roof of the Manazuru field labora-
tory. PAR is shown as daily integrated values. Tidal level at Manazuru Port was obtained by calculation based on the tidal harmonic constants tables (Hydrographic Department, Japan Coast Guard 1992).

Results

Meteorological, physical and chemical environments

Atmospheric pressure declined suddenly during the passage of Mawar, and the minimum value of 977 hPa was recorded on Day 0 (Fig. 2a). Before Mawar, from Day –2 to Day –1, relatively high wind speed was observed, reaching a maximum of 14.6 m sec\(^{-1}\) on Day 0. During the passage of Mawar, the wind direction was west–southwest. The maximum daily precipitation of 202 mm and the minimum PAR of 4.5 mol m\(^{-2}\) d\(^{-1}\) was recorded on Day –1 (Fig. 2b). It did not rain after the passage of Mawar for nine days, and the average irradiance was 35.3 mol m\(^{-2}\) d\(^{-1}\). From Day 10 to Day 12, the PAR showed relatively low values. After Day 5, middle and spring tides were observed, and between Day 5 and Day 8 strong ebb tides occurred (Fig. 2c). Water temperature rose up from 25.5 (Day –0.5) to 27.0°C (Day 0.5) with the passage of Mawar (Fig. 3a).

Fig. 2. Temporal variations in meteorology as (a) wind stick diagram and atmospheric pressure, (b) precipitation and photosynthetically active radiation (PAR) and (c) tidal level. Arrows show the day of the passage of typhoon Mawar in Sagami Bay, Japan.
The concentration of Si(OH)_4 increased from 12.4±6.2 μM on Day –2 to 76.5±2.2 μM on Day 2.5 (up to 6.2 times) after the passage of Mawar (Fig. 4c). Relatively high concentrations of Si(OH)_4 (59.0±11.8 μM on average from Day 0.5 to Day 7) lasted until Day 7, before the concentration decreased in general, and returned to similar levels as to prior to the passage of Mawar. The N/P ratio exhibited a mean of 7.46±1.40 before the passage of Mawar (Fig. 4d), before increasing to a mean of 13.5±1.4 by Day 3. After Day 9, the N/P ratio fluctuated within relatively high values (29.6±7.8, from Day 9 to Day 13). There were significant inverse relationships between the concentrations of NO_2+NO_3 and Si(OH)_4, and salinity (Pearson's correlation coefficient test, p<0.001; Fig. 5a, c). No significant relationship was observed between salinity and PO_4 concentration (Fig. 5b).

POC, Chl a and primary production

The POC concentration increased from 246 mg m\(^{-3}\) on Day –3 to 480 mg m\(^{-3}\) on Day –0.5 (Fig. 6a) and abruptly declined on Day 0.5, remaining low until Day 3 (225±39 mg m\(^{-3}\) on average). The POC concentration increased abruptly again to a maximum of 556 mg m\(^{-3}\) on Day 4.

Time-series variability of total chl \(a\) concentration (sum of each fraction) was similar to that of POC concentration, except for the peak of POC before the passage of Mawar (Fig. 6b). The mean concentration of total chl \(a\) was 2.60±1.22 mg m\(^{-3}\) before Mawar (from Day –3 to Day –0.5; Fig. 6b). Just after Mawar, chl \(a\) concentrations decreased to 0.51 mg m\(^{-3}\) on Day 0.5, and then abruptly increased, exhibiting the highest value of 7.84 mg m\(^{-3}\) on Day 5. Another chl \(a\) peak (4.14 mg m\(^{-3}\)) was observed on Day 9.5, and then concentrations declined and returned to the values prevalent before the passage of Mawar. Chl \(a\) concentrations of the microplankton (10–180 μm), nanoplankton (2–10 μm) and picoplankton (0.2–2 μm) fraction occupied 72.2±7.2%, 23.1±7.2% and 4.7±5.4% of the total on average, respectively, before the passage of Mawar (Fig. 6b). After Mawar, the mean relative contributions of microplankton, nanoplankton and picoplankton were 61.1±12.1%, 27.1±10.0% and 11.8±9.6%, respectively. Both before and after the passage of Mawar, the proportion of the microplankton fraction was significantly higher than the values of the other two fractions (Scheffé’s F multiple comparison, p<0.01). The variation in the microplankton fraction concentration explained 94% (\(R^2=0.935, n=33\)) of the variation in total chl \(a\) concentration.

Sea surface primary production was 81.3 mg C m\(^{-3}\) d\(^{-1}\) (Fig. 6c) on Day 1, just after the passage of Mawar. The highest value of 349 mg C m\(^{-3}\) d\(^{-1}\) was reached on Day 3. After that, primary production was relatively high until Day 9, then decreased abruptly from Day 11. The amount of carbon fixed per unit of chlorophyll \(a\) per day, the assimilation number, exhibited relatively high values from Day 1 to Day 9 (131 mg C [mg Chl \(a\)]\(^{-1}\) d\(^{-1}\); Fig. 6d), and relatively low values were observed (22 and 38 mg C [mg Chl \(a\)]\(^{-1}\) d\(^{-1}\); Fig. 6d) from Day 11.
Phytoplankton assemblage

Phytoplankton cell abundances exhibited similar fluctua-
tions to chl a concentrations (Fig. 6e). Relatively high cell
abundances of $8.69 \pm 2.18 \times 10^3$ cells mL$^{-1}$ were observed
before the passage of Mawar (from Day –3 to Day –1). During
that period (before Mawar), Skeletonema spp. were
the most dominant group, representing $85.9 \pm 10.3\%$ of total
phytoplankters, followed by Chaetoceros spp. ($6.82 \pm 9.42\%$),
Pseudo-nitzschia spp. ($2.56 \pm 0.48\%$) and
Leptocylindrus spp. ($1.85 \pm 0.42\%$; Fig. 6f). The cell abundance decreased
to $9.22 \pm 6.97 \times 10^2$ cells mL$^{-1}$ on average from Day 0 to
Day 2. Skeletonema spp. were also the most dominant
from Day 0 to Day 3 except for Day 2 when the assem-
bly was characterized by Pseudo-nitzschia spp., being
dominant at 31.5\%, followed by dinoflagellates at 23.1\% and
other diatoms such as Thalassionema nitzschioides
Grunow, Cylindrotheca closterium Ehrenberg and Thalas-
siosira spp. at 21.5\% of the total cell abundance (Fig. 6f).
The cell abundance abruptly increased to the highest value
of 1.55×10^4 cells mL$^{-1}$ on Day 5 when the first chl a
concentration peak was observed (Fig. 6e). Skeletonema spp.
were also the most dominant at 81.6\% on Day 5. Following
the first peak, the most dominant taxon changed to Chaeto-
ceros spp., which were dominant at $50.6 \pm 4.2\%$ from Day
7 to Day 9 (Fig. 6f). Finally, a peak of Leptocylindrus spp.
of $54.1 \pm 17.7\%$ ($1.25 \pm 1.39 \times 10^3$ cells mL$^{-1}$) was observed
on Day 10 lasting to Day 13.

According to the MDS analysis, the community structures
were categorizable into four significant groups
(Group A, B, C and D; analysis of similarities, Global
R=0.892, $p<0.001$; Fig. 7). The community before the pas-
sage of Mawar (i.e. Day –3 to Day –1; Group A) was domi-
nated by high cell abundances of Skeletonema spp., shift-
ing to Group B, characterized by low cell abundances of
Skeletonema spp., and then shifting to Group C, character-
ized by low cell abundances dominated by Pseudo-
nitzschia spp. and dinoflagellates. From Day 7, the commu-
nity shifted to Group D which was dominated by Leptocyl-
indrus spp.

NO$_2$+NO$_3$, PO$_4$ and Si(OH)$_4$ concentrations during the
periods of Group B and Group C were relatively high com-
pared to during the periods of Group A and Group D (Fig.
8a, b, c). There were significant differences in NO$_2$+NO$_3$
concentrations between Group A and Group B, and in the
N/P ratio between Group A and Group D (Scheffe’s F mul-
tiple comparison, $p<0.05$, Fig. 8a, d). Group C was ex-
cluded from the multiple comparison analysis due to the
limited number of samples.
Effect of typhoon on phytoplankton

Discussion

Nutrient origin

Nutrient supply in marine environments is often caused by wind-induced vertical mixing/coastal upwelling (e.g. Shiah et al. 2000), sediment resuspension (e.g. Fogel et al. 1999), terrestrial runoff (e.g. Chen et al. 2009), or a combination of these factors. In the present study, increases in inorganic macronutrient concentrations were observed before the passage of Mawar. At the same time, POC concentrations increased though chl a concentrations and cell abundances did not increase. The increase of POC might have been due to non-phytoplanktonic matter. Because strong winds of 8 m sec\(^{-1}\) or more were observed from Day 2 to Day 0.5, sediment resuspension could have been induced and consequently caused the increase in POC concentrations and nutrient elution from sedimentary pore water. In Lake Biwa, PO\(_4\) concentrations and suspended sediment increased after the passage of a typhoon, which implied sedimentary pore water supply of PO\(_4\) to the water column (Robarts et al. 1998). Thus, the increase in inorganic macronutrient concentrations might also be attributable to sediment resuspension during the passage of Mawar in the present study.

After Mawar, the concentrations of all measured nutrients (NO\(_2+\)NO\(_3\), PO\(_4\) and Si(OH)\(_4\)) increased to Day 3.5 (Fig. 4). In Sagami Bay, high concentrations of NO\(_2+\)NO\(_3\) and Si(OH)\(_4\) have been observed after heavy rainfall, when the supplies of these nutrients to the coastal regions are related to the increase in freshwater discharge due to precipitation (Fujiki et al. 2004, Baek et al. 2009). Thus, the significant negative relationships between NO\(_2+\)NO\(_3\) and Si(OH)\(_4\), and salinity indicate those nutrients were supplied by terrestrial runoff in the present study. In addition, prevailing south winds are known to induce local upwelling off the east coast of the Izu Peninsula (Kishi 1976, 1977). During the passage of Mawar, southerly winds were observed at the Ajiro Office, located on the east coast of the Izu Peninsula. According to hydrographic conditions reported by the Kanagawa Prefectural Fisheries Technology Center (http://www.agri-kanagawa.jp/suisoken/noaa2/noaa2.asp), a cold water mass, which might have been caused by coastal upwelling, prevailed around the western part of Sagami Bay on Day 2 after the passage of Mawar. This suggests that coastal upwelling also supplied NO\(_2+\)NO\(_3\), Si(OH)\(_4\) and PO\(_4\) into the photic zone.

Chl a and primary production

Chl a exhibited two concentration peaks, on Day 5 and after Day 9.5. The high chl a concentration on Day 5 was a result of high primary productivity due to the increase in nutrient concentrations and high PAR following Mawar. After the highest chl a concentration on Day 5, although a high assimilation number was maintained, the chl a concentration decreased. The relative decrease in chl a concentration (e.g. Day 5.5, Day 7.5 and Day 8.5) could be due to advection attributable to the ebb tide. High chl a concentration after Day 9.5 was the result of the high primary production on Day 9. Relatively high phytoplankton biomass after Day 9.5 might be maintained due to small-scale nutrient loading accompanied by bad weather from Day 10 to Day 12, though primary productivity was low due to low PAR.

Primary production exhibited a relatively low value on Day 1 and was at its maximum on Day 3. Assimilation numbers exhibited high values from Day 1, lasting until
Day 9 (131 ± 29 mg C [mg Chl a]⁻¹ d⁻¹), which was significantly higher than the mean assimilation number, 40 mg C [mg Chl a]⁻¹ d⁻¹, observed in August and September in Sagami Bay (Student’s t-test, p<0.01) reported by Sugawara et al. (2003). Previous studies utilizing remote sensing measurements reported time lags of 3 to 6 days between phytoplankton blooms and their preceding typhoons (Subrahmanyam et al. 2002, Lin et al. 2003, Walker et al. 2005, Zheng & Tang 2007). In the present study, phytoplankton exhibited high photosynthetic activity from Day 1, due to the high nutrient concentrations and high PAR following the passage of Mawar. After Day 9, the assimilation numbers (22 and 38 mg C [mg Chl a]⁻¹ d⁻¹) returned to the values close to mean assimilation number (40 mg C
Effect of typhoon on phytoplankton

[mg Chl a]^{-1} d^{-1} reported by Sugawara et al. (2003). The results suggest that the passage of Mawar significantly enhanced primary productivity for nine days.

In order to assess the impacts of typhoons on phytoplankton biomass and production, we calculated the ratios of various values in the literature after typhoon passages (A) and either before typhoon passages or the average values during non-typhoon periods (B), expressing them as A/B ratios (Table 1). In coastal regions, the A/B ratios of chl a concentration and primary production reported by previous studies were 0.56–12 (3.3 on average) and 1.2–19 (5.2 on average), respectively (Table 1). These mean A/B ratios were similar to the current values of 3.0 for chl a concentration and 4.4 for primary production. The A/B ratios tend to vary depending on typhoon and region. Although the A/B ratio data set is scarce, these values could be potential key indices to estimate the effects of typhoons on phytoplankton biomass and production.

The integrated primary production for the nine days after the passage of Mawar was 2.10 \times 10^3 mg C m^{-3}, which accounts for 7.2–9.1% of the annual primary production in the upper waters of Sagami Bay [annual primary production values were derived from Satoh et al. 2000 (2.92 \times 10^4 mg C m^{-3} yr^{-1}), Sugawara et al. 2003 (2.30 \times 10^4 mg C m^{-3} yr^{-1}) and Ara & Hiromi 2009 (2.82 \times 10^4 mg C m^{-3} yr^{-1})] (Table 2). In the oceanic region of the South China Sea, integrated primary production at the bloom centre after typhoon passages have been calculated, and accounted for 9.9–23% of the annual primary production derived from Liu et al. (2002) (Lin et al. 2003, Zhao et al. 2008; Table 2). Approximately 3 typhoons on average approach Sagami Bay annually (Japan Meteorological Agency), which implies that primary production in the upper waters of Sagami Bay may be enhanced in the range of 21.6–27.3% of the annual primary production. The present study verified that episodic events such as typhoons can make large contributions to annual primary production in temperate coastal regions.

Phytoplankton assemblages

The increase in chl a concentration after the passage of Mawar was attributable to larger size phytoplankton, mostly diatoms such as Skeletonema spp. and Leptocylindrus spp. The response of diatoms in the present study to
typhoon passage is in general agreement with previous studies (Glynn et al. 1964, Zeeman 1985, Furnas 1989, Delesalle et al. 1993, Chang et al. 1996, Chen et al. 2009). Skeletonema spp. were dominant after typhoon passage in Puerto Rico (Glynn et al. 1964), South Carolina (Zeeman 1985) and Northern Taiwan (Chang et al. 1996). Other diatoms such as Chaetoceros spp., Nitzschia spp., Hemiaulus spp. and Rhizosolenia spp. were also reported dominant after typhoon passages (Zeeman 1985, Furnas 1989, Delesalle et al. 1993, Chen et al. 2009). Larger phytoplankton such as diatoms show higher photosynthetic rates than smaller phytoplankton in eutrophic environments (Cermeño et al. 2005). Diatom biomass subsequently sinks to deeper depths rather than being recycled in the shallow-water food web (Dugdale & Wilkerson 1998, Chen et al. 2009). Thus, typhoon passage may affect the carbon flux and trophic structures in temperate coastal regions as well as subtropical oceanic regions (Chen et al. 2009).

The MDS analysis suggests that the phytoplankton assemblage transitioned through two groups (Group B and C) just after the passage of Mawar, and shifted back to Group A by Day 4. The phytoplankton succession before and after Mawar was represented by Skeletonema spp. This phytoplankton genus often exhibits euryhaline characteristics (e.g. Brand 1984, Balzano et al. 2011) and a short time-lag between nutrient uptake and growth (e.g. Collos 1986).

Table 2. Summary of contributions of typhoons to annual primary production (PP).

<table>
<thead>
<tr>
<th>Study site</th>
<th>Typhoon Name</th>
<th>Date</th>
<th>Enhanced integrated PP</th>
<th>Annual PP*</th>
<th>Contribution %</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>South China Sea</td>
<td>Kai-Tak</td>
<td>Jul-2000</td>
<td>mg C m⁻² (35 d)⁻¹</td>
<td>2.96 × 10⁴</td>
<td>1.28 × 10⁵⁺</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mg C m⁻² (20 d)⁻¹</td>
<td>1.27 × 10⁴</td>
<td>1.28 × 10⁵⁺</td>
<td></td>
</tr>
<tr>
<td>South China Sea</td>
<td>Ling-Ling</td>
<td>Nov-2001</td>
<td>mg C m⁻³ (9 d)⁻¹</td>
<td>2.10 × 10³</td>
<td>2.30–2.92 × 10⁴ b,c,d</td>
<td>7.2–9.1</td>
</tr>
<tr>
<td>South China Sea</td>
<td>Kai-Tak</td>
<td>Oct-2005</td>
<td>mg C m⁻³ (20 d)⁻¹</td>
<td>1.34 × 10⁴</td>
<td>1.28 × 10⁵⁺</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mg C m⁻³ (9 d)⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagami Bay</td>
<td>Mawar</td>
<td>Aug-2005</td>
<td>mg C m⁻³ (20 d)⁻¹</td>
<td>2.10 × 10³</td>
<td>2.30–2.92 × 10⁴ b,c,d</td>
<td>7.2–9.1</td>
</tr>
</tbody>
</table>

Annual PP were derived from (a) Liu et al. (2002), (b) Satoh et al. (2000), (c) Suagawara et al. (2003) and (d) Ara & Hiromi (2009)

*Annual PP was not measured in the same year as when the typhoons occurred.

Fig. 9. Relationships between abundance of (a) Skeletonema spp. and (b) Leptocylindrus spp., and N/P ratio. The dotted line (N/P ratio=30) is derived from Roden & O’Mahony (1984).
than 30. In the present study, *Skeletonema* spp. cell abundance was significantly higher at an N/P ratio of less than 30 compared to when the N/P ratio was more than 30 (Mann-Whitney U-test, *p*<0.05, Fig. 9a). On the other hand, *Leptocylindrus* spp. showed the opposite trend, with significantly higher cell abundance at an N/P ratio of more than 30 (Mann-Whitney’s U-test, *p*<0.05, Fig. 9b). The results suggest their respective dominance might be regulated by variations in the N/P ratio.

Prior studies of N/P ratios related to cellular and ambient nutrient status suggest the optimum N/P ratio for *Skeletonema* spp. falls within the range of 8–9 (Parsons et al. 1961, Sakshaug & Olsen 1986, Manabe 1989). The N/P ratios reported after typhoon passages were 9.9 in South Carolina (Zeeman 1985) and 11.5 in northern Taiwan (Chang et al. 1996), which are similar to values found in the present study (12.4) after the typhoon passage when *Skeletonema* spp. were dominant. The range of N/P ratios (9.9–12.4) after the passage of typhoons is similar to levels found in previous studies of *Skeletonema* spp. (Parsons et al. 1961, Roden & O’Mahony 1984, Sakshaug & Olsen 1986, Manabe 1989).

When *Leptocylindrus* spp. increased from Day 9 to Day 10, the PO₄ concentration was 0.17±0.04 μM and the N/P ratio was 29.4±12.2. Once PO₄ concentrations became low (<0.2 μM) and the N/P ratio increased (>30), *Leptocylindrus* spp. dominated the phytoplankton assemblage. Similar findings have been reported in microcosm and mesocosm experiments, as well as in situ observations. In a microcosm experiment, *Leptocylindrus danicus* Cleve dominated the phytoplankton assemblage during phosphorus-limited conditions, when the N/P ratio was 156.3 (Estrada et al. 2003). In a mesocosm experiment where phosphorus was added, *L. danicus* was dominant under N/P ratios of 29.3, 68.3 and 136.7 (Escaravage et al. 1996). In a coastal region, *Leptocylindrus* spp. dominated when the N/P ratio was 30 or more (Del Amo et al. 1997a, b). In the present study, succession in the phytoplankton assemblage was clearly linked to the variation of the N/P ratio and stoichiometry after the passage of *Mawar*.

Typhoons are important disturbance events occurring near the western boundaries of tropical, subtropical and temperate regions (e.g. Tseng et al. 2010). Dramatic variations in physical and chemical factors occurred during and after the passage of *Mawar*. The bi-daily sampling conducted in the present study revealed the timing, magnitude, and productivity of phytoplankton blooms induced by *Mawar*. The enhanced primary production during the nine days after *Mawar* accounted for up to 9.1% of the annual primary production in the upper waters of Sagami Bay. The succession of the phytoplankton assemblage was closely related to variations in the N/P ratio after *Mawar*. Further studies are needed at multiple sites and depths in order to clarify spatial and temporal variations of physical, chemical and biological factors after the passages of typhoons. Meteorological disturbances such as typhoons, which will likely intensify as global climate change progresses, should be considered in annual production models.

Acknowledgements

We are grateful to the staff members at Manazuru Marine Center for Environmental Research and Education, Yokohama National University, and Mr. Kenichi Mori, for their cooperation and support in collecting samples. This work was partly supported by Grants-in-Aid for Scientific Research (20780146) of Japan Society for the Promotion of Science.

References

Hydrographic Department, Japan Coast Guard (1992) Tidal Harmonic Constants Tables. In: Bibliography No. 742 (ed Hydrographic Department, Japan Coast Guard). Japan Hydrographic Association, Tokyo. (in Japanese)

