Phytoplankton ecology in the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: A review

D. V. SUBBA RAO & FAIZA AL-YAMANI

Mariculture and Fisheries Division, Kuwait Institute for Scientific Research, P.O. Box 1638, 22017 Salmiya, Kuwait

Received 4 July 1997; accepted 5 June 1998

Abstract: In the Arabian Gulf, a north to south gradient in the distribution properties of phytoplankton seems to exist. Low species diversity (<116 species), high biomass (~94 μg Chl a l⁻¹) and high production (~318 μg Chl a l⁻¹ h⁻¹) characterize the Shatt Al-Arab estuarine waters in the north. To its south off Kuwait a higher species diversity (148 species), low biomass (~14 μg Chl a l⁻¹) and low production (~867 μg Chl a l⁻¹ h⁻¹) exist. Waters in the Gulf of Oman and Straits of Hormuz further south have the highest species diversity (~527 species), and lower biomass (~1.18 μg Chl a l⁻¹). Due to the impact of oceanic waters, production in these southern waters is probably lower than in the northern waters. The number of taxa phytohydrographically associated with Equatorial sub-surface and common to the Gulf decreased from south to north; they were 79 in the Arabian Gulf and 37 in the waters off Kuwait. Further north off Bushehr, Iran, probably due to lesser exchange with the open ocean, only 10 species were common. Dinoflagellates steadily increased from 34 species in 1931 to 211 in 1990. In the Gulf 18 species known to be harmful elsewhere were present. While some of these taxa are implicated in toxigenic episodes, a few attained bloom proportions in the Gulf but flag a warning for the potential occurrence of toxigenic redtides. Based on these limited data, it is hypothesized that the Gulf ecosystem has a gradient of maturity in the order Shatt Al-Arab > Kuwait waters > Gulf of Oman and Straits of Hormuz. The need to obtain synoptic field data on the spatial-temporal variations of phytoplankton is pointed. Experiments utilizing representative Gulf algal cultures will be crucial and are recommended to our understanding of the functioning of the food-web dynamics in the Arabian Gulf.

Key words: Arabian Gulf, phytoplankton biomass, production

Introduction

The Arabian Gulf is a unique environment. It is a semi-enclosed marginal sea about 1000 km long, about 200–300 km wide, with a mean depth of 35 m and has a total of 6000 km³ volume. North of Shatt Al-Arab estuary it is bound by land and to the south connected to the Gulf of Oman through the narrow Straits of Hormuz that lead to the Arabian Sea (Fig. 1). Estimates of freshwater inflow into the Gulf range between 5×10⁶ to 100×10⁶ m³ (Grasshoff 1976). The rivers Tigris and Euphrates in the north discharge annually each 45.3×10⁶ m³ water, and 57.6×10⁶ and 4.8×10⁶ t sediment, respectively (Reynolds 1993). Because of the
surrounding arid desert and enormous loss of water due to evaporation that does not exceed the precipitation and river run off, surface coastal waters attain a maximum temperature of ~32°C and salinity of 44.30‰ (Saad 1976; Jacob & Al-Muzaini 1990). A north to south gradient with high salinity and lower temperature in the northern Gulf to lower salinity and higher temperature at Hormuz Strait exists (Halim 1984). Unique to the Gulf is the Shamal, that signifies in Arabic northwest winds round the year. During winter it is infamous due to its association with the strongest winds and high seas (Perrone 1981). During winter under the NW winds a counter clockwise circulation sets in. The dense water formed by the winter cooling and evaporation sinks to the bottom in the central Gulf and eventually flows out through the Straits of Hormuz as a thin layer into the Gulf of Oman (Grasshoff 1976; Halim 1984). This vertical mixing results in oxygenation down to the bottom (Siebold 1973). The estimated residence time, i.e., the ratio of the volume of water to the volume exchange rate, in the Gulf is about 2–5 years (Reynolds 1993) close to the earlier estimate of 3 years (Koske 1972).

The Arabian Gulf is a distinct biotope. Although listed in the 49 Large Marine Ecosystems (Sherman 1993), synthesis relating to its primary, secondary and tertiary driving forces that control the variability in biomass yields has not been completed. It does not fit into any three from tropical and subtropical areas, i.e. areas of upwelling (Cushing 1971), monsoon areas, and wet-dry systems (Longhurst 1991). The Gulf experiences several environmental perturbations such as the annual spillage of about 160×10^6 t (Jacob & Al-Muzaini 1995), discharge of cargo vessel ballast waters, both attendant with oil explorations traditional to this region. Estimates of oil pollution in the Gulf vary between 3% of the total oil pollution in the world to 15–20%. At 3% it amounts to 47× the average estimates for a marine environment of a similar surface area (Linden et al. 1988). Besides, discharges from coastal dredging operations, effluents from power and desalination plants, petrochemical industries, slaughterhouses, dairy plants and sewage treatment plants compound the stress on this unique ecosystem.

Phytoplankton, the primary producers in the marine environment, constitute an ideal window for studies aimed at understanding the food-web dynamics in an ecosystem. Their short generation time and their close coupling with the environment would enable us to discern patterns of their response and recovery to environmental perturbations more readily than the higher organisms distanced towards the harvestable end of food chain.
The scope of this review is two-fold: first to present an account on the constituents of the phytoplankton, and second to assess the magnitude of its biomass and primary production. This is followed by identification of gaps in our knowledge with a view to project future scientific needs that would enhance our understanding of the functioning of this ecosystem.

Taxonomic Composition

The first account of phytoplankton from the Gulf lists the occurrence of 34 peridineans (Bohm 1931). Since then, more than 50 publications appeared (see References). Unfortunately taxonomic identity of the species with citation of the original author is not given in a good number of these publications. As a result some of the species may be synonyms of a species now established. Because of its easy accessibility and a thriving commercial shrimp fishery, Shatt Al-Arab estuary and its canals were studied more frequently, evident from the larger proportion of publications, than from other waters in the Gulf.

A north to south gradient in the phytoplankton species diversity is indicated. In the upper reaches of the estuarine waters in general phytoplankton are less diverse, mostly diatoms compared to the open waters. From Shatt Al-Arab a maximum of 116 taxa were reported (Hadi et al. 1984), the bulk of these were members of epiphytic, tychopelagic bacillariophyceae. Other reports list 95 species (Saad & Kell 1975), 22 taxa dominated by 3 tychoplanktonic diatoms (Maulood & Hinton 1979), 77 taxa mostly diatoms (Hinton & Maulood 1980), 90 taxa with diatoms as the dominants (Hulburt et al. 1981). It is possible non-diatom taxa seem to augment the diversity as suggested by the occurrence of 101 taxa (Hinton 1982) and 53 taxa (Al-Saboonchi et al. 1990). Virtually monospecific algal blooms occurred in the Gulf, details of which are presented later.

Composition of phytoplankton from the central region off Kuwait is limited to 135 diatoms and 13 flagellates (Al-Kaisi 1976). Jamal & Pavalov (1976) reported about the same number of diatom species. Examination of fouling panels revealed 205 species of littoral diatoms (Hendy 1970). On the eastern coast of Kuwait Enomoto (1971) reported 39 diatoms including bloom proportions of Rhizosolenia species. Later observations of Jacob et al. (1979, 1980), unfortunately though limited to genera level, confirmed occurrence of dense patches of Rhizosolenia species. They also reported similar patches of Chaetoceros spp., Asterionella spp., and the macroalga Ruttnera species. In the coastal waters off Kuwait, blooms of Phaeocystis sp. occurred during November 1987 and in March and May 1988; total lipids of these contributed about 11% of the dry biomass (Al-Hasan et al. 1990). Blooms of Phaeocystis sp. were again reported off Kuwait during May 1996 (Al-Yamani et al. 1997). These authors also observed blooms of the non-toxic, photosynthetic ciliate Mesodinium nibrum Lohmann, during October 1995. The blooms yielded 1.08×10⁶ cells l⁻¹ and 160 μg Chl a l⁻¹.

The greatest diversity of phytoplankton was in the open Arabian Gulf and in the Gulf of Oman. A total of 345 taxa, mainly composed of diatoms and dinoflagellates, occur in these waters. Phytoplankton diversity is more in the Arabian Gulf than in the Gulf of Oman. In the former, Al-Saadi & Hadi (1987) recorded 527 algae of which 416 were diatoms, 68 dinoflagellates, 16 blue greens, 12 silicoflagellates, 11 coccolithophores, 3 flagellates and 1 cryptomonad. Examination of preserved water samples off Qatar yielded 390 species including 225 diatoms, 152 dinoflagellates, 2 silicoflagellates and 11 blue green algae (Dorgham & Muftah 1986). The northwestern Gulf waters are equally rich in species diversity with 223 algae comprising of 134 diatoms, 86 dinoflagellates, 2 blue greens and 1 silicoflagellate
The Arabian Gulf, which is more diversified than the Gulf of Oman (Dorgham & Muftah 1987), had 175 diatom and 124 dinoflagellate taxa while in the Gulf of Oman they correspond to 92 and 54. Further south, off the Arabian Peninsula, Basson et al. (1977) reported 161 diatom species, 14 dinoflagellates, 16 blue green algae, and 1 green alga. But more recently Jacob & Al-Muzaini (1990, 1995) revised the total taxa in the Gulf to 1220 species with 888 diatoms, 211 dinoflagellates, 82 planktonic chlorophyceae, 8 euglenophytes, 15 silicoflagellates, 15 coccolithophores and one cryptomonad.

Biomass

Cell abundance

Most of these estimates are based on analyses of preserved water samples sedimented in chambers and enumerated. However, details of actual counting procedures were not given (see Hulburt et al. 1981). Saad & Antoine (1983) stored preserved samples in wide mouthed bottles, siphoned off the supernatant, made up the remainder to 50 ml and counted the cells with a haemocytometer. It is likely their counts do not include nanoplanckton and particularly the picoplankton that require a different protocol. Phytoplankton enumeration of Hulburt et al. (1981) and El-Guindy & Dorgham (1992) included filaments of blue green algae. However, all investigators did not include picoplankton enumeration, understandably because the necessary techniques (Li et al. 1983) were probably unavailable to them. For the same reason, the relative contribution of the picoplankton to the chlorophyll and primary production remains unknown.

Although the data are limited, a north to south gradient in the cell abundance is suggested. In Bushehr, Iran, algal abundance ranged between 0.8×10^3 and 14.46×10^3 cells l$^{-1}$ (Hulburt et al. 1981) and 4.18×10^6 cells l$^{-1}$ in the Al-Khandak Canal, an offshoot of Shatt Al-Arab (Schiewer et al. 1982). The highest abundance (7.5×10^6 cells l$^{-1}$) was in the Northwest Gulf (Huq et al. 1977). Off Kuwait there were more cells (0.3×10^3–4308×10^3 cells l$^{-1}$) during the cool months January–March (Jacob et al. 1980) than during the warmer March–May with 0.01×10^3–414.3×10^3 cells l$^{-1}$ (Jacob et al. 1979).

In the Arabian Gulf the cell abundance varied widely; during November it was between 1.4×10^3 and 42.0×10^3 l$^{-1}$ (Dorgham et al. 1987), and in September from 0.07×10^3 to 449.1×10^3 cells l$^{-1}$ (Dorgham & Moftah 1989). In the Straits of Hormuz and the Gulf of Oman during September cell densities were low, i.e. 0.2×10^3–22.7×10^3 cells l$^{-1}$ (Dorgham and Moftah 1989). For the Arabian Gulf in the top 10 meters mean phytoplankton numbers were 18.7×10^3 cells l$^{-1}$ and in the 10–40 m 9.5×10^3 cells l$^{-1}$ (El-Gindy & Dorgham 1992). Cell abundance in the top 10 m and in the 10–40 m of Oman was about 3.7×10^3 l$^{-1}$ (El-Gindy & Dorgham 1992).

Chlorophyll a

Chlorophyll a, a measure of the phytoplankton biomass showed a wide range in these three regions. In Shatt Al-Arab estuary during 28 February and 3 March, 1985 Chl a ranged between 0.22 and $2.89 \mu g$ Chl a l$^{-1}$ (Al-Saadi et al. 1989). The annual range was between 0.52 and $3.25 \mu g$ Chl a l$^{-1}$ (Huq et al. 1981) and 2 to 3 times more chlorophyll in its canals (Al Mousawi et al. 1990). Very high levels ($94.3 \mu g$ Chl a l$^{-1}$) were observed in the Al-Khandak Canal (Schiewer et al. 1982). In the northwestern Gulf values during October were between 0.56 and $2.06 \mu g$ Chl a l$^{-1}$ (Huq et al. 1977) with a suggestion of its accumulation in the bot-
Arabian Gulf Phytoplankton

During autumn biomass ranged from 2.82 to 9.07 \(\mu g \text{ Chl}a^{-1} \) (Huq et al. 1978). In Kuwait waters algal biomass ranged between 0.66 and 10.52 \(\mu g \text{ Chl}a^{-1} \) during January to March (Jacob et al. 1980) and from 0.2 to 13.9 \(\mu g \text{ Chl}a^{-1} \) March–May (Jacob et al. 1979). In the colder months photosynthetic pigments were high similar to phytoplankton cell numbers and coincided with high nutrients (Jacob et al. 1982).

In the southern waters during September in the Arabian Gulf region chlorophyll levels in the top 10 m and the 10–40 m layers corresponded to 1.18 and 0.96 \(\mu g \text{ Chl}a^{-1} \). For the Gulf of Oman they were 0.55 and 0.87 \(\mu g \text{ Chl}a^{-1} \) in the top 10 m and the 10–40 m layers, respectively (El-Gindy & Dorgham 1992).

Primary Production

Compared to reports on phytoplankton abundance, studies on primary production are rare and often are limited to short surveys utilizing oxygen exchange method. In these waters enriched with sewage, information on the sensitivity of oxygen technique and any photosynthetic quotient, critical for evaluation of the data are not given. In Shatt Al-Arab primary production values, based on oxygen exchange method, ranged between 18.5 and 52.9 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) but in areas that received sewage it was 60× higher (Hadi et al. 1989). In Ashar Canal with 17×10⁶ cells l⁻¹, and 301.9 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \), production attained a maximum of 730.59 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Al-Saadi & Antoine 1980). Near Basrah, diel periodicity of photosynthesis was absent during December when production was usually low (0.1 and 3.1 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \), Schiewer et al. 1982). However, during a *Cyclotella meneghiniana* bloom production was high (118 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \), Schiewer et al. 1982). In NorthWest Arabian Gulf during November when the biomass was low, production values were between 10.7 and 31.6 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Haq et al. 1978).

Similar to oxygen exchange measurements, primary production estimates based on \(^{14} \text{C} \) method in the Gulf are a few. Critical analytical details on the determination of total carbon dioxide, corrections for isotopic discrimination, respiratory losses and excretion of labeled products are missing. Only Schiewer et al. (1982) revised their values by a 6% to obtain gross production. Measurements of primary production in the Shatt Al-Arab estuary during 28 February and 3 March 1985 ranged between 5.44 and 10.3 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Al-Saadi et al. 1989). Photosynthetic rates during November were low in the eastern canal of the Shatt Al-Arab and ranged from 18.5 to 52.3 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Hadi et al. 1989). In the western canals that received sewage they were very high and ranged between 31.5 and 3180.9 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Hadi et al. 1989).

For the Kuwait waters daily production values, calculated on the basis of several empirical relationships between total chlorophyll and day length, ranged between 70 and 660 \(\mu g \text{ C l}^{-1} \) during January–March (Jacob et al. 1980). For March–May the average was 867 \(\mu g \text{ C l}^{-1} \) (Jacob et al. 1979). Compared to these, results obtained using \(^{14} \text{C} \) method for 1983–84 that ranged between 0.2 and 1.6 \(\mu g \text{ C l}^{-1} \text{ h}^{-1} \) (Literathy et al. 1988) were substantially low.

Based on a set of 5 oxygen exchange measurements carbon assimilation ratios (\(\mu g \text{ Chl}^{-1} \mu g \text{ Chl}a^{-1} \)) ranged between 1.52 and 8.25 in the North West-Arabian Gulf (Huq et al. 1978). These compare favorably with 1.2 to 14.6 ratios reported from Sharm, a heavily polluted inshore station in the Red Sea off Jiddah (Shaik et al. 1986). In Ashar Canal, and Al-Khandak Canal, offshoots of Shatt Al-Arab with high primary production, the few carbon assimilation numbers available based on oxygen exchange method were 2.4 and 1.3, respectively. These low ratios were attributed to light limitation (Schiewer et al. 1982). Assimilation numbers
based on 14C uptake (Fig. 4, Hadi et al. 1989) even at 2400 lux were abnormally high. For example at station 8 located in the heavily polluted waters of Al-Khandak canal, the maximum production of 3180.9 $\mu g\text{ Chl a l}^{-1}\text{ h}^{-1}$ was in waters with -7 $\mu g\text{ Chl a l}^{-1}$. The resulting assimilation number would be suspect. Nearly 80% of the assimilation numbers calculated from Shatt Al-Arab estuary during 28 February and 3 March 1985 (Al-Saadi et al. 1989) ranged between 2.87 and 16.8 and are acceptable.

Discussion

Floral elements and phytohydrographic associations

Presence of tychopelagic diatom genera *Achnanthes*, *Amphiprora*, *Amphora*, *Caloneis*, *Campylodiscus*, *Diioneis*, *Fragilaria*, *Grammatophora* and *Licmophora* can be due to availability of solar energy necessary for their growth and photosynthesis in this shallow Gulf. The tidal exchange that is accelerated by the currents, eddies and bottom topography (Siebold et al. 1969, 1970) facilitates their redistribution.

Comparison of the distribution of phytoplankton in the Arabian Gulf with results of the numerical investigations of Thorrington-Smith (1971) in the West Indian Ocean (Appendix) reveals several interesting features. Based on the hydrographic distributions and associations between 237 species, Thorrington-Smith recognized several groups of phytoplankton. Geographical distribution of certain phytoplankton species in the Gulf seems to be governed by the local hydrographic conditions. Components of the Western Indian Ocean decreased from south to north in the Arabian Gulf. The number of diatom and dinoflagellates taxa corresponded to 62 and 17 in the Arabian Gulf in general, 54 and 12 off Qatar and 30 and 7 in Kuwait waters (Table 1). Further north of Bushehr, Iran, probably due to lesser exchange with the open ocean, the number of species common to their southern waters is reduced to about 10 (Hulburt et al. 1981).

Dorgham & Mofta (1989) based on data from 44 stations identified 6 groups in the ecological distribution of phytoplankton. The number of diatom and dinoflagellate constituents corre-
Table 1. Comparison of the distribution of diatom and dinoflagellate taxa between the Western Indian Ocean and the Arabian Gulf and between the various regions in the Gulf and the Gulf of Oman region. Data for the Western Indian Ocean are based on Thorrington-Smith (1971). Sources of data for other regions are referenced.

<table>
<thead>
<tr>
<th>Common between</th>
<th>Diatoms</th>
<th>Dinoflagellates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Indian Ocean</td>
<td>Arabian Gulf</td>
<td>62</td>
<td>17</td>
</tr>
<tr>
<td>Western Indian Ocean</td>
<td>Qatar waters</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Western Indian Ocean</td>
<td>Arabian Gulf</td>
<td>52</td>
<td>12</td>
</tr>
<tr>
<td>Western Indian Ocean</td>
<td>N.W. Arabian Gulf</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>Western Indian Ocean</td>
<td>Kuwait waters</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>Western Indian Ocean</td>
<td>Busher, Iran</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Str. Hormuz</td>
<td>Arabian Gulf</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Gulf of Oman</td>
<td>Arabian Gulf</td>
<td>47</td>
<td>61</td>
</tr>
<tr>
<td>Gulf of Oman</td>
<td>Str. Hormuz</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Limited to Gulf of Oman</td>
<td></td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Limited to Str. Hormuz</td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Limited to Arabian Gulf</td>
<td></td>
<td>56</td>
<td>16</td>
</tr>
</tbody>
</table>

spond to 47 and 61 in the Arabian Gulf and Gulf of Oman; 10 and 11 mainly in the Arabian Gulf; 56 and 16 species restricted to the Arabian Gulf; 0 and 5 species recorded only in the Straits of Hormuz; 3 and 11 observed in the Gulf of Oman and the Straits of Hormuz and 4 and 20 for species restricted to the Gulf of Oman (Table 1).

The most dominant phytoplankters in the Gulf belong to the Equatorial sub-surface group identified by Thorrington-Smith (1971). Of the 527 species reported in the Gulf (Al-Saadi & Hadi 1987), 81 were common with the western Indian Ocean of which 22 belonged to Equatorial sub-surface group. They are Amphidinium sp., Asteromphalus heptactis (de Breb) Ralfs, Bacteriastrum delicatum Cleve, Bacteriastrum elongatum Cleve, Chaetoceros atlanticum Cleve, Chaetoceros danicum Cleve, Chaetoceros pendulum Karsten, Chaetoceros affine Lauder, Chaetoceros peruvianum Brightwell, Coscinodiscus marginatus Ehrenberg, Guinardia flaccida (Castracane) Peragallo, Guinardia cylindrus (=Rhizosolenia cylindrus Cleve), Nitzschia bicapitata Cleve, Nitzschia braarudi Hasle, Nitzschia clusorium (Her.) W. Smith, Nitzschia seriata Cleve, Nitzschia sicula Castracane, Planktoniella sol (Wallich) Schütt, Proboscia alata (Brightwell) Sundstrom (=Rhizosolenia alata Brightwell), Rhizosolenia hebetata Bailey, Rhizosolenia hebetata semispina (Hensen) Gran, Thalassiosira eccentric Schmidt (=Coscinodiscus eccentricus Ehrenberg), Thalassiosira oestrupii (Ostenfeld) Proschkina-Laverenko. It is of interest that Thorrington-Smith grouped station 5390 off the Arabian Coast with 5331 in the shear zone region. Further, stations 5423 and 5425 grouped together from the southern boundary of the equatorial under current are characterized as a region of fluctuating conditions. Phytoplankton was rich at these stations and consisted of Chaetoceros affine f. circinalis (Meunier) Hustedt, Bacteriastrum tenue Steemann Nielsen, Chaetoceros decipiens Cleve, and Dactyliosolen mediterraneus Peragallo, of which the last was reported from the Arabian Gulf (Al-Saadi & Hadi 1987).

Occurrence of the diatom Nitzschia seriata Cleve in the Equatorial sub-surface group of phytoplankton deserves a comment. In the Indian coastal seas (Subrahmanyan 1946; Nair 1959), in the Arabian Gulf (Dorgham & Mofta 1986) and in the West Indian Ocean (Torrington-Smith 1971) it is recorded. This species is now revised as Pseudonitzschia seriata (Hasle 1972) and is considered to occur only in subarctic and polar waters north of 45°. There
are 9 *Nitzschia* species forming stepped chains with a tendency to be placed girdle view up in water mounts, although a distinction can be made only in valve view or under an electron microscope. Its occurrence in various oceanic areas is regarded with skepticism (Hasle 1972). Because of (a) close morphological similarities among 3 forms of *Nitzschia pungens*: seriata, multiseries and pungens, (b) occurrence of morphological variations (Subba Rao & Wohlgeschaffen 1990), and (c) their implication of in the production of the neurotoxin domoic acid (Subba Rao et al. 1988) correct identification of *Nitzschia seriata* is essential.

Observations of Dorgham & Moftah (1989) are significant and suggest existence of marked variations in the phytoplankton composition probably due to hydrographic differences and possible incursion of algae from the Gulf of Oman or from outside the Gulf into the Arabian Gulf. Phytoplankton species can be used as indicators of water movements (Subba Rao 1976). To do so, systematic and synoptic data are to be obtained, correct identity of the species is to be established, biogeographical distribution of the species studied, its sterile distribution known and its abundance related to water masses based on temperature, salinity and density (Smayda 1958; Semina et al. 1977).

Phytoplankton blooms and harmful algae

Occurrence of blooms of *Cyclotella meneghiniana* Kütz, *Chlamydomonas* sp., *Euglena acus*, *Chaetoceros* spp., *Rhizosolenia* spp., *Asterionella* spp., *Rutamna* sp., *Phaeocystis* sp. and members of cyanophyceae, some of which are implicated elsewhere in toxic episodes flag a warning for potential shifts in phytoplankton abundance. Al-Hansan et al. (1990) associated occurrence of such blooms to inorganic nutrient enrichment caused by an increased disposal of untreated sewage. Results of Dorgham & Moftah (1989) indicate dominance of several species in the net plankton samples. Examples are *Pseudosolenia calcar-avis* (Schulze) Sundström (=*Rhizosolenia calcar-avis* Shultz) (<90%), *Trichodesmium* sp. (<90%), *Ceratium furca* Claparde et Lachman (<80%), *Chaetoceros curvisetum* Cleve (<80%), *Rhizosolenia shrubsolei* Cleve (<75%), *Coscinodiscus perforatus* v. pavillardii Ehrenberg (<60%), *Proboscia alata* (Brightwell) Sundström, (=*Rhizosolenia alata*) f. indica Gran (<50%), *Thalass-
siothrix frauenfeldii Grunnow (<50%) and Pyrodinium bahamense (Bohm) Steidinger, Test et Taylor (<38%).

Results of Dorgham et al. (1987) do suggest abundant growth of the dinoflagellates in the Gulf associated with pollution. Three harmful dinoflagellates Pyrodinium bahamense (Bohm) Steidinger, Test et Taylor, Lingulodinium polyedra (Stein) Dodge (=Gonyaulax polyedra Stein) and Prorocentrum micans Ehrenberg co-occur in the Gulf (Dorgham & Moftah 1989). These taxa are listed potentially harmful (see Lassus 1985; reports of the International Council for the Exploration of the Seas, Subba Rao, unpublished data). The high frequency (38%) of occurrence of Pyrodinium bahamense (Bohm) Steidinger, Test et Taylor in the waters off Qatar, and United Arab Emirates is associated with maximum concentrations of phosphorus (1.23 µg at l⁻¹) and nitrate (0.90 µg at l⁻¹). This suggests existence of a potential for development of harmful algal blooms in the Arabian Gulf (Dorgham & Moftah 1989). There is ample evidence to show that monospecific blooms of algae, particularly the dinoflagellates, could result in toxigenic episodes (Smayda 1990; Subba Rao 1994).

Several harmful algae occur in the Arabian Gulf waters. This is evident from a comparison of the taxa of primary producers in the Arabian Gulf (Jacob & Al-Muzaini 1990) with the list of harmful algae compiled from reports of the International Council for the Exploration of the Seas (Subba Rao, unpublished data). Presence of 38 taxa is to be noted which includes the following 18 identified to the species level: the blue green alga Nodularia spumagera Jurgens, the diatoms Amphora coffeaeformis Kützing, Chaetoceros atlanticum Cleve, Chaetoceros convolutum Castracane, Chaetoceros danicum Cleve, Chaetoceros decipiens Cleve, Nitzschia pungens Grunow and the dinoflagellates Ceratium furca (Ehrenb.) Claparé et Lachman, Ceratium fusus Dujardin, Ceratium trichoceros Kofoid, Dinophysis acuminata Claparé et Lachman, Dinophysis caudata Saville-Kent, Lingulodinium polyedra (Stein) Dodge (=Gonyaulax polyedra Stein), Gonyaulax polygramma Stein, Gonyaulax spinifera Diesing, Prorocentrum sigmooids Bohm, Prorocentrum micans Ehrenberg, and the silicoflagellate Dictyocha schultzei (=Distephanus speculum [Ehrenberg] Haeckel). Occurrence of blooms of Phaeocystis pouchetii during November, March and May (Al-Hasan et al. 1990) and Meso-dinium rubrum Lohmann, during August in Kuwait Bay was noted earlier.

The other 18 taxa identified up to the genus level include the blue green algae Anabaena sp., Anphanizomenon sp., Microcystis sp., Trichodesmium sp., and the diatoms Asterionella sp. Bacteriastrum sp., Coscinodiscus sp., Cyclotella sp., Eucampia sp., Fragilaria sp., Leptocylindrus sp. Rhizosolenia sp. and Thalassiosira sp. and the dinoflagellates Gyrodinium sp., Katodinium sp., and Triadinium sp. Additionally the euglenoid flagellates Euglena sp., Trachelomonas sp., and the green alga Dunaliella sp. also occurred. It will be necessary to establish their identity to the species level to decide their harmful or toxigenic nature.

Increase in species diversity: species introduction

A steady increase in the number of dinoflagellates during the past 60 years is of interest (Dorgham et al. 1987) which coincides with general organic enrichment in the Arabian Gulf (Fig. 2). Dorgham et al. suggested that it might be the case with the diatoms also. While partly this increase is attributable to better sampling, identification and enumeration, it may be allochthonous due to transfer of species into the Gulf from the Arabian Sea and the Gulf of Oman. Further we emphasize the role of introductions and transfer of exotic algae into the Gulf region through billions of tones of ballast water brought to the Gulf region by thousands of cargo ships and oil tankers. In the Suez Canal, Egypt at least 13 species of Red Sea origin
have spread northward towards Port Said while a good number to El-Suez in the south (El-Sherif & Ibrahim 1993). Such introduced species could trigger extensive ecological changes in the phytoplankton community structure, leading to potential economic loss to commercial fisheries (Subba Rao et al. 1994).

Nutrients

Nitrates, phosphates and silicates, the nutrients essential for phytoplankton growth, are more abundant in the Northwest region (Shatt Al-Arab) than those to the south (Al-Saadi & Hadi 1987; Hulburt et al. 1981). Results of Halim (1984, Table 4) support this. During September, only phosphate, nitrite and nitrate levels but not ammonia and silica in Qatari waters were higher than in the waters off the United Arab Emirates (Dorgham & Moftah 1989). The relatively phosphate rich inflowing surface water from the Straits of Hormuz enrich this nutrient in the Arabian Gulf (Brewer & Dryssen 1985). Although local eutrophication processes seem important, widespread systematic interdisciplinary oceanographic studies will be necessary to assess the extent to which the deflected upwelled water (Halim 1984) contributes to nutrient enrichment in the Arabian Gulf.

Growth of phytoplankton from Shatt Al-Arab estuary increased significantly (6 to 7 times) due to combined enrichment of 50.5 µmol nitrate and phosphate (Al-Saadi et al. 1989). Enrichment of nitrogen or phosphorus alone did not enhance phytoplankton growth. In these turbid waters light may be a limiting factor for phytoplankton growth in the estuarine waters of Shatt-Al-Arab (Schiewer et al. 1982). It is of interest to note that growth of Bushehr phytoplankton cultures could be stimulated to an optimal level over a wide range of temperature (12–34°C) even in media with low nitrate and high phosphate (Hulburt et al. 1981). According to these authors these perpetually bright sunlight turbid waters receive 27–148 cal cm⁻² d⁻¹ exceeding the 20 cal cm⁻² d⁻¹ required for phytoplankton growth in Narragansett Bay, a nutrient rich temperate coastal bay. Precise physiological ecology studies utilizing algal cultures would be required to understand the photosynthetic functioning of this biota.

Besides the run off, decay of organic matter from sinking blooms and discharge of sewage
account for the very high local phosphorus levels that result in an imbalance in the N : P ratios (Saad 1984, 1985). Under such conditions, shifts in the dominant constituents of algae are to be expected. In fact, following peaks of N : P ratios, phytoplankton blooms appeared in the Gulf of Elat, a desert enclosed sea (Levanon-Spanier et al. 1979). As discussed earlier precise enrichment experiments are needed to predict shifts in the dominance of either the picoplankton (<3 μm), nanoplankton (<20 μm) or the larger microplankton or different taxonomic groups dominated by diatoms and dinoflagellates. The consequential impact on the food-web dynamics and the commercially important mariculture operations would be far reaching.

North–south gradients: energy flow

The Arabian Gulf will be an interesting area for studies on energy flow. From the limited data presented earlier, a north to south gradient in the species diversity, abundance and biomass is indicated. Existence of a similar gradient in primary production is probable. Although not applicable in detail, the gradients are analogous to that between the Bothnian Bay and the Norwegian Coast of the Baltic Sea (Wallentinus 1991).

The Shatt Al-Arab region with its various environmental stresses, river run off, tidal exchange and mud flats represent a high physical energy system. The lower species diversity, higher biomass, higher production and lower carbon assimilation rates discussed earlier suggest that from an ecological perspective it could be a mature system (Margalef 1968). These are usually characterized by benthos dominated by filter feeders, high rates of metabolism supported by current transport of food and are heterotrophic (see Day et al. 1989). In such systems detritus resulting from sinking of algal blooms or decay of macrophytes plays a significant role in sustaining filter feeders. It is of interest that in the Gulf of Elat (Red Sea), a similar biotope from this geographical region, several hundred times more chlorophyll exists in the sand than in the plankton (Sournia 1977) which can play a significant role in the food-web dynamics.

The central region of the Gulf represented by Kuwait waters is comparable to the shallow littoral areas characterized by moderate to strong currents, bottom within euphotic zone, and oxygenated water column (see Day et al. 1989). These waters with a lesser impact of the rivers have higher species diversity dominated by diatoms. The biomass and the rate of gross production are high. Although the detritus food chain is important, direct grazing may play a significant role in the food-web dynamics. The more open environment of Hormuz Straits and the Gulf of Oman represent a low energy system with an exchange with the open ocean. This region experiences north-northwest winds during summer with a reversal to south-southeast during October–April (Halim 1984). To the north along the coast of Dhofar region, southern Oman upwelling was discontinuous (Savidge et al. 1990). During southwest monsoon upwelling is indicated by admixture of surface water with oxygen depleted, phosphate rich deeper waters. This region represents an evolving system characterized by greater species diversity, low biomass and probably less production.

Scope of future studies

To know precisely about the forcing variables that drive this unique ecosystem, we need to establish criteria for characterization of the biotopes in the Gulf. Crucial to this will be hard data along several lines: (a) the role of river run off and upwelling on the spatial and temporal distributions of various size groups of phytoplankton, (b) vertical fluxes of organic matter between the benthic and pelagic biota, (c) the effects of climatic variables on phytoplankton pro-
duction, (d) importance of the river run off as a contributing factor, i.e. trace elements and humic materials that trigger algal blooms, both benign and toxigenic, and (e) response and recovery of algal populations to environmental perturbations. It will be prudent to utilize Gulf algal cultures grown under defined environmental conditions as analogues of natural blooms to test the various hypotheses.

Acknowledgments

For advice, constructive criticism and encouragement during the preparation of this manuscript, we thank Dr Sulaiman Almatar, Departmental Manager, Mariculture and Fisheries Department, KISR. We are grateful to Mr Mike Hansen, MFD Librarian for his tenacity in securing most of the publications from obscure journals without which preparation of this manuscript would have been impossible. We also thank Mr P. G. Jacob and two anonymous reviewers for critical reading of the manuscript. Our grateful thanks are to the anonymous reviewer for insightful comments on the biogeographical distribution of *Nitzschia seriata*. We thank Bala T. Durvasula for assistance with the graphics and in the preparation of the manuscript.

Appendix

Species common to the West Indian Ocean and the Arabian Gulf.

Diatoms

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asterionella glacialis Castracane</td>
<td></td>
</tr>
<tr>
<td>Asteromphalus heptactis Ralfs in Pritchard</td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum delicatulum Cleve</td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum elongatum Cleve</td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum hyalinum Lauder</td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum conosum Pavillard</td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum varians Lauder</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros affine Lauder</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros affine Lauder f. asymmetricum (St Niel.) Th Smith</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros atlanticum Cleve</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros compressum Lauder</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros decipiens Cleve f. simplex Th Smith</td>
<td></td>
</tr>
<tr>
<td>Chaetoceros decipiens Cleve</td>
<td></td>
</tr>
<tr>
<td>Coscinodiscus ocularis-iridis Ehrenberg</td>
<td></td>
</tr>
<tr>
<td>Coscinodiscus radiatus Ehrenberg</td>
<td></td>
</tr>
<tr>
<td>Cyclotella stytorum Brightwell</td>
<td></td>
</tr>
<tr>
<td>Dactylosolein mediterraneus Peralgal</td>
<td></td>
</tr>
<tr>
<td>Fragilaria oceanica Cleve</td>
<td></td>
</tr>
<tr>
<td>Grammatophora sp.</td>
<td></td>
</tr>
<tr>
<td>Guinardia cylindrus Peralgal</td>
<td></td>
</tr>
<tr>
<td>Hemisculus membranaceus Cleve</td>
<td></td>
</tr>
<tr>
<td>Leptocylindrus danicus Cleve</td>
<td></td>
</tr>
<tr>
<td>Melosira granulata (Ehrenb.) Ralfs in Pritchard</td>
<td></td>
</tr>
<tr>
<td>Nitzschia bicapitata Cleve</td>
<td></td>
</tr>
<tr>
<td>Nitzschia braarudii Hasle</td>
<td></td>
</tr>
<tr>
<td>Nitzschia closterum (Ehr.) W. Smith</td>
<td></td>
</tr>
<tr>
<td>Nitzschia sicula Castracane</td>
<td></td>
</tr>
<tr>
<td>Planktoniella sal (Wallich) Schutt</td>
<td></td>
</tr>
<tr>
<td>Pseudosolenia calcar-avis (Schulz)</td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia imbricata var. shrubsolei (Cleve) Schröder</td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia styliformis var. longispina Brightwell</td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia stoterforthii Peralgal</td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia alata f. gracilima (Cleve) Grunow</td>
<td></td>
</tr>
<tr>
<td>Synedra sp.</td>
<td></td>
</tr>
<tr>
<td>Thalassiothrix sp.</td>
<td></td>
</tr>
</tbody>
</table>

Dinoflagellates

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphidinium sp.</td>
<td></td>
</tr>
<tr>
<td>Ceratium deflexum (Kofoid) Jorgensen</td>
<td></td>
</tr>
<tr>
<td>Ceratium extensus (Gourr.) Cleve</td>
<td></td>
</tr>
<tr>
<td>Ceratium furca (Ehrenb.) Claparde et Lachman</td>
<td></td>
</tr>
<tr>
<td>Ceratium fusus (Ehrenb.) Dujardin</td>
<td></td>
</tr>
<tr>
<td>Ceratium kofoidii Jorgensen</td>
<td></td>
</tr>
</tbody>
</table>

References

Cocconeis scutellum Ehrenberg
Corethron criptihilum Castracane
Coscinodiscus centralis Ehrenberg
Coscinodiscus decrescens Grunow
Coscinodiscus marginatus Ehrenberg

Appendix

Species common to the West Indian Ocean and the Arabian Gulf.
Arabian Gulf Phytoplankton

Ceratium macrocercos (Ehrenb.)
Kofoid
Locblich III

Ceratium pelagica (Ehrenb.)
Vanhoffen

Ceratium pulchellum Schröder

Ceratium teres Kofoid

Ceratium trichoceros (Ehrenb.)

Silicoflagellate

Dictyocha fibula Ehrenberg

Cyanophyte

Oscillatoria sp.

Literature Cited

